Distributed Algorithms for Providing Fairness in Heterogeneous Computer Systems

نویسنده

  • Satish Penmatsa
چکیده

Distributed computing systems often consist of heterogeneous computing resources managed by different administrators. Due to the distributed nature, effective management of the resources may become difficult and the performance of the system may be affected. Also, the users of distributed systems may be self-interested whose goal would be to maximize their own utility. Such selfinterested agents may adversely affect the performance of the system. Here, we present performance optimization algorithms whose objective is to provide fairness to all the users of a distributed system involving selfish users i.e. all the users will experience approximately the same expected response time for the execution of their jobs or will have to pay approximately the same expected price for the execution of their jobs. Distributed heterogeneous systems with various system and node models are considered. Experimental results with various system configurations are presented comparing the performance of the presented algorithms with other existing schemes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved Token-Based and Starvation Free Distributed Mutual Exclusion Algorithm

Distributed mutual exclusion is a fundamental problem of distributed systems that coordinates the access to critical shared resources. It concerns with how the various distributed processes access to the shared resources in a mutually exclusive manner. This paper presents fully distributed improved token based mutual exclusion algorithm for distributed system. In this algorithm, a process which...

متن کامل

An Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ

An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...

متن کامل

An Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ

An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...

متن کامل

Adaptive Dynamic Data Placement Algorithm for Hadoop in Heterogeneous Environments

Hadoop MapReduce framework is an important distributed processing model for large-scale data intensive applications. The current Hadoop and the existing Hadoop distributed file system’s rack-aware data placement strategy in MapReduce in the homogeneous Hadoop cluster assume that each node in a cluster has the same computing capacity and a same workload is assigned to each node. Default Hadoop d...

متن کامل

Static Task Allocation in Distributed Systems Using Parallel Genetic Algorithm

Over the past two decades, PC speeds have increased from a few instructions per second to several million instructions per second. The tremendous speed of today's networks as well as the increasing need for high-performance systems has made researchers interested in parallel and distributed computing. The rapid growth of distributed systems has led to a variety of problems. Task allocation is a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012